Cancer-associated fibroblasts derived from EGFR-TKI-resistant tumors reverse EGFR pathway inhibition by EGFR-TKIs.
نویسندگان
چکیده
Epidermal growth factor receptor (EGFR) plays a critical role in oncogenesis, which makes it an attractive target for pharmacologic inhibition. Yet, EGFR inhibition with tyrosine kinase inhibitors (TKI) does not result in a measurable and sustainable clinical benefit in a vast majority of tumors. This emphasizes the need for further investigations into resistance mechanisms against EGFR-TKIs. We previously reported the generation of an in vivo adenocarcinoma model of EGFR-TKI-acquired resistance that was devoid of the known mechanisms of resistance. Using this same xenograft model, we now show that the tumor stroma plays an important role in limiting responsiveness to EGFR-TKIs. EGFR-TKI-resistant tumors display increased surface expression of CD44(hi)/CD24(lo) and markers of epithelial to mesenchymal transition (EMT), SNAI1, and N-cadherin. An in vivo green fluorescent protein-tagging approach reveals that the tumor stroma of the EGFR-TKI-resistant tumors is distinct in that 24% of its cancer-associated fibroblast (CAF) population is composed of EMT-derived tumor cells that represent the in vivo escape from EGFR-TKIs. We further show that EMT subpopulation-harboring CAFs isolated from the EGFR-TKI-resistant tumors are tumorigenic and express the biomarker of gefitinib resistance, epithelial membrane protein-1. Finally, we provide evidence that paracrine factors secreted from the EGFR-TKI-resistant CAFs mitigate the EGFR-TKI-mediated blockade of pEGFR and pMAPK in cocultured tumor cells, regardless of their EGFR mutational status. This is the first demonstration that the tumor stroma is modified with acquisition of EGFR-TKI resistance and that it further contributes in promoting drug resistance.
منابع مشابه
Crosstalk with cancer-associated fibroblasts induces resistance of non-small cell lung cancer cells to epidermal growth factor receptor tyrosine kinase inhibition
Although lung cancers with activating mutations in the epidermal growth factor receptor (EGFR) are highly sensitive to selective EGFR tyrosine kinase inhibitors (TKIs), these tumors invariably develop acquired drug resistance. Host stromal cells have been found to have a considerable effect on the sensitivity of cancer cells to EGFR TKIs. Little is known, however, about the signaling mechanisms...
متن کاملBiology of Human Tumors Podoplanin-Positive Cancer-Associated Fibroblasts in the Tumor Microenvironment Induce Primary Resistance to EGFR-TKIs in Lung Adenocarcinoma with EGFR Mutation
Purpose: The biologic characteristics of microenvironmental constituents, especially cancer-associated fibroblasts (CAF), can be key regulators of the cellular sensitivity to molecular-targeted therapy. Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKI) have marked therapeutic effects against non–small cell lung cancer (NSCLC) with EGFR mutations, but some patients have exhi...
متن کاملEfficacy of continuous EGFR-inhibition and role of Hedgehog in EGFR acquired resistance in human lung cancer cells with activating mutation of EGFR
PURPOSE The aim of this work was to investigate the efficacy of sequential treatment with first-, second- and third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors and the mechanisms of acquired resistance occurring during the sequential use of these inhibitors. EXPERIMENTAL DESIGN We developed an in vivo model of acquired resistance to EGFR-inhibitors by treatin...
متن کاملAbility of the Met Kinase Inhibitor Crizotinib and New Generation EGFR Inhibitors to Overcome Resistance to EGFR Inhibitors
PURPOSE Although EGF receptor tyrosine kinase inhibitors (EGFR-TKI) have shown dramatic effects against EGFR mutant lung cancer, patients ultimately develop resistance by multiple mechanisms. We therefore assessed the ability of combined treatment with the Met inhibitor crizotinib and new generation EGFR-TKIs to overcome resistance to first-generation EGFR-TKIs. EXPERIMENTAL DESIGN Lung cance...
متن کاملPodoplanin-positive cancer-associated fibroblasts in the tumor microenvironment induce primary resistance to EGFR-TKIs in lung adenocarcinoma with EGFR mutation.
PURPOSE The biologic characteristics of microenvironmental constituents, especially cancer-associated fibroblasts (CAF), can be key regulators of the cellular sensitivity to molecular-targeted therapy. Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKI) have marked therapeutic effects against non-small cell lung cancer (NSCLC) with EGFR mutations, but some patients have exhib...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular cancer research : MCR
دوره 8 6 شماره
صفحات -
تاریخ انتشار 2010